Inference for functions of parameters in discrete distributions based on fiducial approach: Binomial and Poisson cases

نویسندگان

  • K. Krishnamoorthy
  • Meesook Lee
چکیده

In this article, we propose a simple method of constructing confidence intervals for a function of binomial success probabilities and for a function of Poisson means. The method involves finding an approximate fiducial quantity (FQ) for the parameters of interest. A FQ for a function of several parameters can be obtained by substitution. For the binomial case, the fiducial approach is illustrated for constructing confidence intervals for the relative risk and the ratio of odds. Fiducial inferential procedures are also provided for estimating functions of several Poisson parameters. In particular, fiducial inferential approach is illustrated for interval estimating the ratio of two Poisson means and for a weighted sum of several Poisson means. Simple approximations to the distributions of the FQs are also given for some problems. The merits of the procedures are evaluated by comparing them with those of existing asymptotic methods with respect to coverage probabilities, and in some cases, expected widths. Comparison studies indicate that the fiducial confidence intervals are very satisfactory, and they are comparable or better than some available asymptotic methods. The fiducial method is easy to use and is applicable to find confidence intervals for many commonly used summary indices. Some examples are used to illustrate and compare the results of fiducial approach with those of other available asymptotic methods. & 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A continuous approximation fitting to the discrete distributions using ODE

The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...

متن کامل

Fiducial Inference and Belief Functions

One aspect of Fisher’s work which has puzzled a great many statisticians is the idea of Fiducial Inference. Using “pivotal” variables, Fisher moves from logical statements about restrictions of parameter spaces to probabilistic statements about parameters. The method works, but with a lot of caveats: the pivotal variables must be sufficient statistics, must be continuous, &c. Dempster’s explora...

متن کامل

On Bivariate Generalized Exponential-Power Series Class of Distributions

In this paper, we introduce a new class of bivariate distributions by compounding the bivariate generalized exponential and power-series distributions. This new class contains the bivariate generalized exponential-Poisson, bivariate generalized exponential-logarithmic, bivariate generalized exponential-binomial and bivariate generalized exponential-negative binomial distributions as specia...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009